A Remark on Primality Testing and Decimal Expansions
نویسندگان
چکیده
We show that for any fixed base a, a positive proportion of primes become composite after any one of their digits in the base a expansion is altered; the case where a = 2 has already been established by Cohen and Selfridge [‘Not every number is the sum or difference of two prime powers’, Math. Comput. 29 (1975), 79–81] and Sun [‘On integers not of the form ±pa ± qb’, Proc. Amer. Math. Soc. 128 (2000), 997–1002], using some covering congruence ideas of Erdős. Our method is slightly different, using a partially covering set of congruences followed by an application of the Selberg sieve upper bound. As a consequence, it is not always possible to test whether a number is prime from its base a expansion without reading all of its digits. We also present some slight generalisations of these results. 2010 Mathematics subject classification: primary 35J10.
منابع مشابه
Primality Testing and Integer Factorisation
The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisati...
متن کاملA Note On the Storage Requirement for AKS Primality Testing Algorithm
We remark that AKS primality testing algorithm needs about 1,000,000,000 G (gigabyte) storage space for a number of 1024 bits. Such storage requirement is hard to meet in practice. To the best of our knowledge, it is impossible for current operating systems to write and read data in so huge storage space. Thus, the running time for AKS algorithm should not be simply estimated as usual in terms ...
متن کاملPrimalitv Testing and Jacobi Sums
Wc present a theoretically and algorithmically simplified version of a primalitv testing algorithm that was recently invented by Adleman and Rumely. The new algorithm performs well in practice. It is the first primality test in existence that can routinely handle numbers of hundreds of decimal digits.
متن کاملComputation of an Improved Lower Bound to Giuga's Primality Conjecture
Our most recent computations tell us that any counterexample to Giuga’s 1950 primality conjecture must have at least 19,908 decimal digits. Equivalently, any number which is both a Giuga and a Carmichael number must have at least 19,908 decimal digits. This bound has not been achieved through exhaustive testing of all numbers with up to 19,908 decimal digits, but rather through exploitation of ...
متن کاملRandomness, Promise Problems, Randomized Complexity Classes
A big problem that motivates randomized algorithms is that of Primality testing: Given 0 ≤ p ≤ 2, determine if p is prime in poly(n) time. Algorithms such as Miller-Rabin and Solovay-Strassen are randomized algorithms that can solve this in polynomial time, though more recently Agrawal-Kayal-Saxena found a deterministic solution to primality testing. Remark When we say randomized, the goal is f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008